Remote & Collaborative Visualization
TACC Remote Visualization Systems

- **Longhorn** – Dell XD Visualization Cluster
 - 256 nodes, each with 48 GB (or 144 GB) memory, 8 cores, 2 NVIDIA Quadro FX 5800 GPUs with 4 GB graphics memory each
- **Spur** – Sun Visualization Cluster
 - 8 nodes, each with 128 GB (or 256 GB) memory, 16 cores, 4 NVIDIA Quadro FX 5600 GPUs with 1.5 GB graphics memory each
- Available for use by TACC and XSEDE users
- Both mount Ranger’s filesystems
Methods of Remote Access

• SSH
 – Basic command-line interface, useful for managing files, submitting jobs, etc.

• Longhorn Visualization Portal
 – Simplified web-based interface for:
 • Viewing your allocations
 • Submitting jobs
 • Interacting with remote vis sessions (VNC or EnVision)

• Direct VNC connection
SSH Access

- Start the “Secure Shell Client” application
- Click “Quick Connect”
 - Host Name: longhorn.tacc.utexas.edu
 - User Name: <your training account>
 - Click “Connect”
SSH Access

- You’re now on a Longhorn login node
- Can run usual shell utilities
- Manage data, etc.
SSH Access

- For later reference (more details in Longhorn User Guide):
 - Can submit a remote VNC job from here
 - qsub /share/doc/sge/job.vnc
 - tail -f vncserver.out
 - Connect to address in output file with a VNC viewer
Longhorn Visualization Portal

- http://portal.longhorn.tacc.utexas.edu
- A web-based interface that lets you:
 - View your allocations
 - Submit jobs
 - Interact with remote VNC or EnVision sessions
- Avoids the hassle and complexity of manually managing your jobs
- For many users this can be the primary method of interacting with Longhorn
- Advanced users may still use SSH
Login as a **TACC** user with your training account (Firefox)
Start a VNC job
First time only: Set a VNC password
First time only: Set a VNC password
Start a VNC job (submit again)
VNC Session
Running Vis Applications through VNC

- To see available applications:
 - `module avail`

- Examples:
 - Run ParaView:
 - `module load python paraview`
 - `vglrun paraview`
 - Run VisIt
 - `module load visit`
 - `vglrun visit`
Accessing your VNC session with a stand-alone viewer

- Navigate to the Jobs tab
- Copy the server address
Accessing your VNC session with a stand-alone viewer

• Navigate to the Jobs tab
• Copy the server address
• Run the “TightVNC Viewer” application
 – Enter the server address from the Jobs tab
 – Click Connect
 – Enter your VNC password set previously
 – Click Okay
Accessing your VNC session with a stand-alone viewer

- Navigate to the Jobs tab
- Copy the server address
- Run the “TightVNC Viewer” application
 - Enter the server address from the Jobs tab
 - Click Connect
 - Enter your VNC password set previously
 - Click Okay
- You can now interact with your VNC session (and share this session with your collaborators)
Parallel Visualization

- You can specify how many nodes (or slots) to use during job submission
- Run vis applications in the parallel environment
EnVision Guided Visualization

- An easy-to-use web-based tool for remote scientific visualization
- Available through the Longhorn Vis Portal
- Developed at TACC
 - Funded in part by TeraGrid and the DoD PET program
 - Development team: Greg Johnson, Steve Mock, Brandt Westing, Matthew Hanlon
Run an EnVision session

- Navigate back to the “Jobs” tab
- End your current job
- Select the session type “EnVision guided visualization”
Run an EnVision session

• Load the mummy data in the remote file browser (click the Examples shortcut)
Run an EnVision session

• Load the mummy data in the remote file browser (click the Examples shortcut)

• **Click the Isosurface icon**
Run an EnVision session

- Load the mummy data in the remote file browser (click the Examples shortcut)
- Click the Isosurface icon
- *Add an isosurface with default parameters*
Run an EnVision session

- Load the mummy data in the remote file browser (click the Examples shortcut)
- Click the Isosurface icon
- Add an isosurface with default parameters
- See the visualization in the Rendering tab
Run an EnVision session

- Click the cutting plane icon in the toolbox
Run an EnVision session

- Click the cutting plane icon in the toolbox
- *Keep the default values; click Add*
Run an EnVision session

- Click the cutting plane icon in the toolbox
- Keep the default values; click Add
- *Click the hand next to the cutting plane under Added Algorithms; use the widget to interact*
Run an EnVision session

- Click the cutting plane icon in the toolbox
- Keep the default values; click Add
- Click the hand next to the cutting plane under Added Algorithms; use the widget to interact
- Click the hand again
Run an EnVision session

• Click the Eye next to each added vis algorithm to hide
Run an EnVision session

- Click the Eye next to each added vis algorithm to hide
- Click volume rendering icon in the toolbox
Run an EnVision session

- Click the Eye next to each added vis algorithm to hide
- Click volume rendering icon in the toolbox
- Set values as shown and click Add
Run an EnVision session

- Click the Eye next to each added visualization algorithm to hide.
- Click volume rendering icon in the toolbox.
- Set values as shown and click Add.
Run an EnVision session

• Click the Eye next to each added vis algorithm to hide
• Click volume rendering icon in the toolbox
• Set values as shown and click Add
• *Click volume rendering icon in lower left; change settings as you wish*
Run an EnVision session

• Explore the isotropic turbulence example data on your own