
NUMA Control for Hybrid Applications

Hang Liu

TACC

February 7th, 2011

Hybrid Applications

• Typical definition of hybrid application
– Uses both message passing (MPI) and a form of shared memory

algorithm (OMP)
– Runs on multicore systems
– Multicore systems have multilayered, complex memory architecture

• Hybrid programming does not guarantee optimal performance
– But it is required for very large core counts (MPI limitation)
– Actual performance is heavily application dependent

• Non-Uniform Memory Access

– Multiple memory levels
– Different access latencies for different levels
– Complicated by asymmetries in multisocket, multicore systems
– More responsibility on the programmer to make application efficient

Modes of Hybrid Operation

3

MPI Task on Core

16 MPI Tasks

Master Thread of MPI Task

1 MPI Tasks
16 Threads/Task

4 MPI Tasks
4Threads/Task

Slave Thread of MPI Task
Master Thread of MPI Task

Pure MPI
1 MPI Task
Thread on each Core

Needs for NUMA Control

• Asymmetric multi-core configuration on node
requires better control on core affinity and
memory policy.

– Load balancing issues on node

• Slowest CPU/core on node may limit overall
performance

– use only balanced nodes, or

– employ special in-code load balancing measures

• Applications performance can be enhanced by
specific arrangement of

– tasks (process affinity)

– memory allocation (memory policy)

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

0

3 2

1

NUMA Operations

• Each thread is executed by a core and has access to a
certain memory space

• Core assigned by process affinity

• Memory allocation assigned by memory policy

• The control of process affinity and memory policy using
NUMA operations

• NUMA Control is managed by the kernel (default).

• Default NUMA Control settings can be overridden with
numaclt.

NUMA Operations

• Ways Process Affinity and Memory Policy can be
managed:

– Dynamically on a running process (knowing process id)

– At process execution (with wrapper command)

– Within program through F90/C API

• Users can alter Kernel Policies by manually setting
Process Affinity and Memory Policy

– Users can assign their own processes onto specific cores.

– Avoid overlapping of multiple processes

numactl Syntax

• Affinity and Policy can be changed externally
through numactl at the socket and core level.

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Socket References

0 1

3 2

0,1,2,3 4,5,6,7

12,13,14,15 8,9,10,11

Core References

numactl Options on Ranger
 cmd option arguments description

Socket Affinity numactl -N {0,1,2,3}

Only execute
process on cores of
this (these)
socket(s).

Memory Policy numactl -l {no argument}
Allocate on current
socket.

Memory Policy numactl -i {0,1,2,3}
Allocate round
robin (interleave)
on these sockets.

Memory Policy numactl --preferred=
{0,1,2,3}
select only one

Allocate on this
socket; fallback to
any other if full .

Memory Policy numactl -m {0,1,2,3}
Only allocate on
this (these)
socket(s).

Core Affinity numactl -C

{0,1,2,3,
 4,5,6,7,
 8,9,10,11,
 12,13,14,15}

Only execute
process on this
(these) Core(s).

Memory Policies

• MPI – local is best

• SMP – Interleave best for large,
completely shared arrays

• SMP – local is best for private arrays

• Once allocated, a memory structure’s
is fixed

Memory: Socket References

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

0

3 2

1

Hybrid Runs with NUMA Control

• A single MPI task (process) is launched and
becomes the “master thread”.

• It uses any numactl options specified on the
launch command.

• When a parallel region forks the slave threads,
the slaves inherit the affinity and memory
policy of the master thread (launch process).

Hybrid Batch Script 16 threads

 job script (Bourne shell) job script (C shell)

... ...

#! -pe 1way 192 #! -pe 1way 192

... ...

export OMP_NUM_THREADS=16 setenv OMP_NUM_THREADS 16

ibrun numactl –i all ./a.out ibrun numactl –i all ./a.out

• Make sure 1 MPI task is created on each node

• Set number of OMP threads for each node

• Can control only memory allocation

• No simple/standard way to control thread-core affinity

Hybrid Batch Script 4 tasks, 4 threads/task

 job script (Bourne shell)

 job script (C shell)

... ...

#! -pe 4way 192 #! -pe 4way 32

... ...

export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4

ibrun numa.sh ibrun numa.csh

 numa.sh

#!/bin/bash

export MV2_USE_AFFINITY=0

export MV2_ENABLE_AFFINITY=0

export VIADEV_USE_AFFINITY=0

#TasksPerNode

TPN=`echo $PE | sed 's/way//'`

[! $TPN] && echo TPN NOT defined!

[! $TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

 numa.csh

 #!/bin/tcsh

 setenv MV2_USE_AFFINITY 0

 setenv MV2_ENABLE_AFFINITY 0

 setenv VIADEV_USE_AFFINITY 0

#TasksPerNode

 set TPN = `echo $PE | sed 's/way//'`

 if(! ${%TPN}) echo TPN NOT defined!

 if(! ${%TPN}) exit 0

 @ socket = $PMI_RANK % $TPN

 numactl -N $socket -m $socket ./a.out

fo
r

m
v
a

p
ic

h
2

Hybrid Batch Script with tacc_affinity

13

 job script (Bourne shell) job script (C shell)

... ...

#! -pe 4way 192 #! -pe 4way 192

... ...

export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4

ibrun tacc_affinity ./a.out ibrun tacc_affinity ./a.out

• Simple setup for ensuring evenly distributed core setup for

your hybrid runs.

• tacc_affinity is not the single magic solution for every

application out there - you can modify the script and replace

tacc_affinity with yours for your code.

tacc_affinity
#!/bin/bash

MODE=`/share/sge/default/pe_scripts/getmode.sh`

First determine "wayness" of PE

myway=`echo $PE | sed s/way//`

Determine local compute node rank number

if [x"$MODE" == "xmvapich2_ssh"]; then

 export MV2_USE_AFFINITY=0

 export MV2_ENABLE_AFFINITY=0

 my_rank=$PMI_ID

elif [x"$MODE" == "xmvapich1_ssh"]; then

 export VIADEV_USE_AFFINITY=0

 export VIADEV_ENABLE_AFFINITY=0

 my_rank=$MPIRUN_RANK

else

 echo "TACC: Could not determine MPI stack. Exiting!"

 exit 1

fi

tacc_affinity (cont’d)

local_rank=$(($my_rank % $myway))

Based on "wayness" determine socket layout on local node

if less than 4-way, offset to skip socket 0

if [$myway -eq 1]; then

 numnode="0,1,2,3"

if 2-way, set 1st task on 0,1 and second on 2,3

elif [$myway -eq 2]; then

 numnode="$((2 * $local_rank)),$((2 * $local_rank + 1))"

elif [$myway -lt 4]; then

 numnode=$(($local_rank + 1))

if 4-way to 12-way, spread processes equally on sockets

elif [$myway -lt 13]; then

 numnode=$(($local_rank / ($myway / 4)))

if 16-way, spread processes equally on sockets

elif [$myway -eq 16]; then

 numnode=$(($local_rank / ($myway / 4)))

Offset to not use 4 processes on socket 0

else

 numnode=$((($local_rank + 1) / 4))

fi

#echo "TACC: Running $my_rank on socket $numnode”

exec numactl -c $numnode -m $numnode $*

Summary

• NUMA control ensures hybrid jobs to run with
optimal core affinity and memory policy.

• Users have global, socket, core-level control
for process and threads arrangement.

• Possible to get great return with small
investment by avoiding non-optimal
core/memory policy.

