NUMA Control for Hybrid Applications

Y

Hang Liu
TACC
February 7th, 2011

TACG TEXAS ADVANCED COMPUTING CENTER

Hybrid Applications

* Typical definition of hybrid application

— Uses both message passing (MPI) and a form of shared memory
algorithm (OMP)

— Runs on multicore systems
— Multicore systems have multilayered, complex memory architecture

* Hybrid programming does not guarantee optimal performance
— But it is required for very large core counts (MPI limitation)
— Actual performance is heavily application dependent

* Non-Uniform Memory Access

— Multiple memory levels

— Different access latencies for different levels

— Complicated by asymmetries in multisocket, multicore systems

— More responsibility on the programmer to make application efficient

TACG TEXAS ADVANCED COMPUTING CENTER

Modes of Hybrid Operation

1 MPI Task
Thread on each Core

4 MPI Tasks 1 MPI Tasks
16 MPI Tasks AThreads/Task 16 Threads/Task

Has _aa- as _aaH Has_aa-]
Has - as aaH as aa-l

Master Thread of MPI Task
] MPI Task on Core

"2l Master Thread of MPI Task
[l Slave Thread of MPI Task

TACG TEXAS ADVANCED COMUTING CENTER

Needs for NUMA Control

* Asymmetric multi-core configuration on node
requires better control on core affinity and
memory policy.

2 43
— Load balancing issues on node H: - - - -

*—Q *—0
* Slowest CPU/core on node may limit overall HE EE
performance

— use only balanced nodes, or - -._.- -
%II Ilﬁ‘O

— employ special in-code load balancing measures 1 ‘
e Applications performance can be enhanced by B
specific arrangement of
— tasks (process affinity)

— memory allocation (memory policy)

TACG TEXAS ADVANCED COMPUTING CENTER

NUMA Operations

- Each thread Is executed by a core and has access to a
certain memory space

« Core assigned by process affinity
« Memory allocation assigned by memory policy

« The control of process affinity and memory policy using
NUMA operations

« NUMA Control is managed by the kernel (default).

« Default NUMA Control settings can be overridden with
numacit.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

NUMA Operations

e Ways Process Affinity and Memory Policy can be
managed:
— Dynamically on a running process (knowing process id)

— At process execution (with wrapper command)
— Within program through F90/C API

e Users can alter Kernel Policies by manually setting
Process Affinity and Memory Policy
— Users can assign their own processes onto specific cores.
— Avoid overlapping of multiple processes

TACG TEXAS ADVANCED COMPUTING CENTER

numactl Syntax

e Affinity and Policy can be changed externally
through numactl at the socket and core level.

Command: numactl <options> ./a.out
2 3 8,9,10,11 12,13,14,15
EE S HE S
-I-X- | -I-X- i
] ey] .] e] .
HE HE HE HE
1 0 4,56,7 0,1,2,3

Socket References

Core References

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

numactl Options on Ranger

cmd option arguments description
Only execute
process on cores of
numactl N {0,1,2,3} this (these)
socket(s).
I N {ho argument} Allocate on current
£ socket.
Allocate round
numactl -i {0,1,2,3} robin (interleave)
on these sockets.
Allocate on this
numactl --preferred: 0,1,2,3} socket; fallback to
select only one .
any other if full .
Only allocate on
numactl -m {0,1,2,3} this (these)
socket(s).
01,23, Only execute
4,5,6,7, .
numactl -C process on this
8,9,10,11, (these) Core(s)
12,13,14,15} '

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Memory Policies

H:-- --:” * MPI-local is best
HETEET
X

HE _HE .
%II --ﬂo

e SMP — Interleave best for large,
completely shared arrays

e SMP —local is best for private arrays

* Once allocated, a memory structure’s

1
is fixed

Memory: Socket References

TACG TEXAS ADVANCED COMPUTING CENTER

Hybrid Runs with NUMA Control

* Asingle MPI task (process) is launched and
pecomes the “master thread”.

* |t uses any numactl options specified on the
aunch command.

* When a parallel region forks the slave threads,
the slaves inherit the affinity and memory
policy of the master thread (launch process).

TACG TEXAS ADVANCED COMPUTING CENTER

Hybrid Batch Script 16 threads

e Make sure 1 MPI task is created on each node

e Set number of OMP threads for each node

e (Can control only memory allocation

* No simple/standard way to control thread-core affinity

job script Bourne shell) job script (c shel
#! -pe 1lway 192 #! -pe lway 192

export OMP_NUM_THREADS=16 | setenv OMP_NUM_ THREADS 16
ibrun numactl —i all ./a.out ibrun numactl —i all ./a.out

TACG TEXAS ADVANCED COMPUTING CENTER

for mvapich?2

Hybrid Batch Script 4 tasks, 4 threads/task

job script (Bourne shell)

#! -pe 4way 192

export OMP_NUM_THREADS=4

ibrun numa.sh

job script (C shell)

#! -pe 4way 32

setenv OMP_NUM_THREADS 4

ibrun numa.csh

numa.sh
#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0

#TasksPerNode

TPN="echo $PE | sed 's/way//"

[$TPN] && echo TPN NOT defined!
[$TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

numa.csh
#/bin/tcsh
setenv MV2_USE_AFFINITY O
setenv MV2_ENABLE_AFFINITY O
setenv VIADEV_USE_AFFINITY O

#TasksPerNode

set TPN = "echo $PE | sed 's/way//"
if(! ${%TPN}) echo TPN NOT defined!
if(! ${%TPN}) exit O

@ socket = $PMI_RANK % $TPN

numactl -N $socket -m $socket ./a.out

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Hybrid Batch Script with tacc_affinity

« Simple setup for ensuring evenly distributed core setup for

your hybrid runs.

« tacc_affinity is not the single magic solution for every
application out there - you can modify the script and replace
tacc_affinity with yours for your code.

job script Bourne shell

#! -pe 4way 192

export OMP_NUM_THREADS=4
ibrun tacc_affinity ./a.out

job script (c shel
#! -pe 4way 192

setenv OMP_NUM_THREADS 4
ibrun tacc_affinity ./a.out

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

tacc_affinity

#!/bin/bash

MODE="/share/sge/default/pe scripts/getmode.sh’
First determine "wayness" of PE

myway= echo $PE | sed s/way//"

Determine local compute node rank number
if [x"SMODE" == "xmvapich2 ssh"]; then
export MV2_USE AFFINITY=0
export MV2 ENABLE AFFINITY=0
my rank=$PMI ID
elif [x"$MODE" == "xmvapichl ssh"]; then
export VIADEV USE AFFINITY=0
export VIADEV ENABLE AFFINITY=0
my rank=$MPIRUN RANK
else
echo "TACC: Could not determine MPI stack. Exiting!"
exit 1
fi

TACG TEXAS ADVANCED COMPUTING CENTER

tacc_affinity (cont’d)

local rank=$(($my_rank % Smyway))
Based on "wayness" determine socket layout on local node
if less than 4-way, offset to skip socket 0
if [Smyway -eq 1]; then
numnode="0,1,2,3"
if 2-way, set 1lst task on 0,1 and second on 2,3
elif [Smyway -eq 2]; then
numnode="$((2 * $local rank)),S$((2 * $Slocal rank + 1))"
elif [$myway -1t 4]; then
numnode=$ (($local rank + 1))
if 4-way to 1l2-way, spread processes equally on sockets
elif [$myway -1t 13]; then
numnode=$ (($local rank / (S$myway / 4)))
if 16-way, spread processes equally on sockets
elif [$Smyway -eq 16]; then
numnode=$ (($local rank / (S$myway / 4)))
Offset to not use 4 processes on socket 0
else
numnode=$ ((($local rank + 1) / 4))
fi
#echo "TACC: Running $my rank on socket $numnode”

exec numactl -c $Snumnode -m $numnode S$*

TACC TEXAS ADVANCED COMPUTING CENTER

Summary

* NUMA control ensures hybrid jobs to run with
optimal core affinity and memory policy.

e Users have global, socket, core-level control
for process and threads arrangement.

* Possible to get great return with small
investment by avoiding non-optimal
core/memory policy.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

