CUDA Introduction

João Barbosa
GRA – Visualization Software
Texas Advanced Computing Center
jbarbosa@tacc.utexas.edu
Outline

• Brief introduction of some concepts
• Programming model
• Execution model
Brief Notions

- **HOST**: CPU, not a single core but the whole system
- **DEVICE**: On CUDA the GPU itself
- **KERNEL**: The computational payload called from the host to be executed on the device.
CUDA - Compute Unified Device Architecture

• Heterogeneous programming model
 – CPU and GPU are separate devices with separate memory spaces
 – CPU code is standard C/C++
 • Driver API: low-level interface
 • Runtime API: high-level interface (one extension to C)
 – GPU code
 • Subset of C with extensions

• CUDA goals
 – Scale GPU code to 100s of cores, 1000s of parallel threads
 – Facilitate heterogeneous computing
CUDA - Software Development

CUDA Optimized Libraries: FFT, BLAS, ...
Integrated CPU + GPU C Source Code

NVIDIA C Compiler

NVIDIA Assembly for Computing
CPU Host Code

CUDA Driver
Standard C Compiler

Debugger Profiler
GPU
CPU
CPU vs GPU

• Different goals
 – GPU assumes that workload is highly parallel
 – CPU must be good at everything, parallel or not
CPU vs GPU

- CPU: minimize latency of a single thread
 - Large on-chip cache
 - Complex logic

Image from “NVidia CUDA C Programming Guide”
NVidia
CPU vs GPU

• GPU: maximize throughput of all threads
 – # Threads limited by resources → lots of resources
 – Thousands of threads → Smaller cache
 – Control shared across multiple threads

Image from “NVidia CUDA C Programming Guide”
NVidia
Outline

• CUDA Programming model
 – Basic concepts
 – Data types
• CUDA Application interface
• SAXPY
 – Basic example
Hierarchy of concurrent threads

- Parallel kernels are composed of many threads
 - STMD - all threads execute the same code
 - Unique ID within the group
- Threads are group into thread blocks
 - Threads within the same block can cooperate
- Threads organized into a grid

Image from “Parallel Thread Execution ISA 3.0”, NVidia
Transparent Scaling

- Blocks can be assigned arbitrarily to any processor
 - Increases scalability to any number of cores
- blocks must be independent for this reason, to accommodate various GPU architectures
CUDA Function keywords

• `__global__` always defines a kernel
• `__device__` and `__host__` may be combined

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Function Type</th>
<th>Executed on the:</th>
<th>Only callable from the:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__device__</code></td>
<td><code>float DeviceFunc()</code></td>
<td>device</td>
<td>device</td>
</tr>
<tr>
<td><code>__global__</code></td>
<td><code>void KernelFunc()</code></td>
<td>device</td>
<td>host</td>
</tr>
<tr>
<td><code>__host__</code></td>
<td><code>float HostFunc()</code></td>
<td>host</td>
<td>host</td>
</tr>
</tbody>
</table>
CUDA Function notes

• Function executed on the device
 – Limited recursion

• C++ Object / Classes are valid
 – Methods must by qualified: __device__ and __host__
Calling kernel functions

(...)
__global__ void HelloWorld() {
 printf("Hello World!");
}

(...)
dim3 DimGrid(1,1); // 1 * 1 # Blocks
dim3 DimBlock(1,1,1); // 1 * 1 * 1 # Threads per block
HelloWorld <<< DimGrid , DimBlock >>>();

• All kernels calls are asynchronous
 – Explicit sync is required for blocking
Compiling code

$ nvcc -O3 helloWorld.c -o helloWorld
$./helloWorld
Hello World!
$
Memory hierarchy model

- **Thread Scope**
 - R/W registers (RW)
 - “Local” memory (RW)
- **Block scope**
 - Shared memory (RW)
- **Grid scope**
 - Global memory (RW)
 - Constant memory (RO)
 - Texture Memory (RO)
Memory hierarchy model

- **Global Memory**
 - Communication between host and device
 - Content visible to all threads
 - Long latency access

- **Shared Memory**
 - Low latency access
 - Used for intra-block / inter-thread cooperation
CUDA Variable type qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **Automatic variables (without qualifier)**
 - Mapped to registers
 - May spill to GPU main memory
- **Shared** is used for intra-block / inter-thread cooperation
Memory sharing

- **“Local” Memory**
 - Private per thread
 - Register Spilling
- **Shared Memory**
 - Threads of the same block
 - Inter-thread comm.
- **Global Memory**
SAXPY example
SAXPY Problem

• Two vectors and a scalar
 – X, Y - Vectors
 – α - Scalar

• $R = \alpha \times X + Y$
void saxpy_cpu(float *X, float *Y, float alpha, float *R, int N) {

 for(int index=0; index < N; index++)
 R[index] = alpha * X[index] + Y[index];

}
void saxpy_cpu(float *X, float *Y, float alpha, float *R, int N){

 for(int index=0; index < N; index++)
 R[index] = alpha * X[index] + Y[index];
}

void saxpy_cpu(float *X, float *Y, float alpha, float *R, int N) {
 #pragma omp parallel for
 for(int index=0; index < N; index++)
 R[index] = alpha * X[index] + Y[index];
}
Hierarchy of concurrent threads

- **blockIdx.\{x,y,z\}** - stores the block identification
 - Note: Z is always one (for now)
- **threadIdx.\{x,y,z\}** - stores the thread identification
- **blockDim.\{x,y,z\}** - stores Block dimension
- **gridDim.\{x,y,z\}** - stores Grid dimension
SAXPY Problem - CUDA kernel

__global__
void saxpy_kernel(float *X, float *Y, float alpha, float *R, int N) {
 int index = blockIdx.x * blockDim.x + threadIdx.x;
 if (index >= N) return; // Checks the array limit
 R[index] = alpha * X[index] + Y[index];
}

#define N 256

int main(int argc, char* argv[]) {
 float *X_h, *Y_h, *R_h; // Pointer for host objects
 float *X_d, *Y_d, *R_d; // Pointer for device objects
 float alpha = 2.5f;

 /* Allocate Host Memory */
 /* Allocate Device Memory */
 /* Init vectors */
 /* Copy data host to device */
 /* Call Kernel */
 /* Copy data device to host */

 return 0;
}
Device Memory Allocation

• `cudaMalloc(void **ptr, size_t size)`
 – equivalent to “malloc”
 – allocates memory in device global memory
 – `ptr` - stores pointer to allocated object
 – `size` - request allocation size

• `cudaFree(void* ptr)`
 – releases allocated object in device global memory
 – `ptr` - pointer to device object
Main function

/* Allocate Host Memory */
X_h = (float*)malloc(N*sizeof(float));
Y_h = (float*)malloc(N*sizeof(float));
R_h = (float*)malloc(N*sizeof(float));

/* Allocate Device Memory */
cudaMalloc((void*)&X_d, N*sizeof(float));
cudaMalloc((void*)&Y_d, N*sizeof(float));
cudaMalloc((void*)&R_d, N*sizeof(float));
Synchronous data transfer

- `cudaMemcpy(void* dst, void* dst, size_t size, cudaMemcpyKind kind)`
 - Synchronous memory data transfer
 - Requires
 - `dst` - destination pointer
 - `src` - source pointer
 - `size` - size
 - `kind` - Transference type
Synchronous data transfer

- cudaMemcpy(void* dst, void* dst, size_t size, cudaMemcpyKind kind)
 - Types of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device

- Asynchronous version are available
- Fermi: new kind cudaMemcpyDefault
Main function

/* Init vectors */
initVectors(X_h,Y_h,R_h)
/* Copy data host to device */
cudaMemcpy(X_d,X_h, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(Y_d,Y_h, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(R_d,R_h, N*sizeof(float), cudaMemcpyHostToDevice);
Main function

/* Call Kernel */
dim3 dimGrid(1,1);
dim3 dimBlock(1,N);

saxpy_kernel <<< dimGrid, dimBlock >>>(X_d,Y_d,alpha,R_d,N);

/* Copy data device to host */
cudAAllocDevice(R_h,R_d, N*sizeof(float),cudAAllocDeviceToHost);
/* Remember cudaMemcpy is synchronous */
LABS NOTES

• You should have an account to the longhorn cluster
• Login to longhorn
 – ssh <yourusername>@longhorn.tacc.utexas.edu
• Preparing the environment
 – module swap intel
 – module load cuda
 – module load cuda_SDK
LAB NOTES

• Longhorn User Guide: http://www.tacc.utexas.edu/user-services/user-guides/longhorn-user-guide
1st Lab

• Login to your longhorn account
• Copy the tar file to your home directory
 – cp /home/01206/jbarbosa/tranning-1.tar.bz2 .
 – tar xjf tranning-1.tar.bz2
• Move to tranning-1/saxpy
 – src folder contains the source for the exercise
 – bin will hold the final binary
1st Lab

• Edit the saxpu.cu file and complete the kernel
 – Use your favorite editor (vim, nano, ...)
• To compile run “make” on tranning-1/saxpy
To execute

- qsub saxpy.job
- idev -pe wayness cores -q queue -A account [-l hh:mm:ss | -minutes x] -help
 - idev –pe 8 8 -q development –A 20111129VIS -l 00:15:00 -rank0
 - Request one node and 8 cores
 - Development queue
 - Account 20111129VIS
 - For 15 min
 - Login to rank0
Matrix Multiplication

A more complex example
Squared Matrix Multiplication

- \(P = M \cdot N \)
 - Size (NxN)
- First approach
 - Single threads computes one element of matrix C

M and N are loaded N Times from global memory

Image from “NVidia CUDA C Programming Guide”
NVidia
for(int i = 0; i < n; i++)
 for(int j=0; j < n; j++) {
 float dot = 0.f;
 for(int k=0; k < n; k++)
 dot += (M[i*n+k] * N[k*n+j]);
 P[i*n+j] = dot;
 }
CUDA Code

```c
int j = blockIdx.x * blockDim.x + threadIdx.x;
int i = blockIdx.y * blockDim.y + threadIdx.y;

float dot = 0.f;
for(int k=0; k < n; k++)
    dot += (M[i*n+k] * N[k*n+j]);

P[i*n+j] = dot;
```

Image from “NVidia CUDA C Programming Guide”
NVidia
How does it perform?

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many loads per term of dot product?</td>
<td>2 ((a & b) = 8) Bytes</td>
</tr>
<tr>
<td>How many floating point operations?</td>
<td>2 (multiply & addition)</td>
</tr>
<tr>
<td>Global memory access to flop ratio (GMAC)</td>
<td>(8) Bytes / 2 ops = 4 B/op</td>
</tr>
<tr>
<td>What is the peak fp performance of GeForce GTX 580?</td>
<td>1.581 TFLOPS</td>
</tr>
<tr>
<td>Lower bound on bandwidth required to reach peak fp performance</td>
<td>GMAC * Peak FLOPS = 6.33 TB/s</td>
</tr>
<tr>
<td>What is the actual memory bandwidth of GeForce GTX 580?</td>
<td>194.2 GB/s</td>
</tr>
<tr>
<td>Then what is an upper bound on performance of our implementation?</td>
<td>Actual BW / GMAC = 194.2/ 4 = 48 GFLOPS</td>
</tr>
</tbody>
</table>
Can we do better?

- Can we use shared memory
 - Based on CPU tile algorithm
 - Goal: reduce number of loads from global memory
Use Shared Memory

- Based on CPU tile algorithm
- Goal: reduce loads from global
- Each thread loads an element of the tile to memory
Use Shared Memory

- Partition kernel into phases
- Load into `__shared__` a tile of each matrix per phase
CUDA Code (Shared memory)

// shorthand
int tx = threadIdx.x, ty = threadIdx.y;
int bx = blockIdx.x, by = blockIdx.y;

// allocate tiles in shared memory
__shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
__shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

// calculate the row & col index
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;
float result = 0;
CUDA Code (Shared memory)

// shorthand
int tx = threadIdx.x, ty = threadIdx.y;
int bx = blockIdx.x, by = blockIdx.y;

// allocate tiles in shared memory
__shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
__shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

// calculate the row & col index
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;
float result = 0;

Identify the thread position within the block and matrix
CUDA Code (Shared memory)

// shorthand
int tx = threadIdx.x, ty = threadIdx.y;
int bx = blockIdx.x, by = blockIdx.y;

// allocate tiles in shared memory
__shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
__shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

// calculate the row & col index
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;
float result = 0;
CUDA Code (Shared memory)

for(int p = 0; p < width/TILE_WIDTH; ++p) {

 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 for(int k = 0; k < TILE_WIDTH; ++k)

 result += s_a[ty][k] * s_b[k][tx];

 __syncthreads();

}

ab[row*width+col] = result;
CUDA Code (Shared memory)

for(int p = 0; p < width/TILE_WIDTH; ++p) {

 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 for(int k = 0; k < TILE_WIDTH; ++k)
 result += s_a[ty][k]
 __syncthreads();
}

ab[row*width+col] = result;
CUDA Memory Coalescing

• Organized by half-warp (pre-Fermi) or warp (GF100)
 – Half-warp = 16 int/float = 64 bytes
 – Full-warp = 32 int/float = 128 bytes
• GPU global memory is accessed in 32, 64 or 128 byte blocks
• Each SM detects the memory requests across the active warp and coalesces them into the fewest and the smallest requests
CUDA Memory Coalescing

• Simple Examples
 – All threads access a sequential memory address
CUDA Memory Coalescing

• Simple Examples
 – All threads access a sequential memory address
 – Even if threads access it out of order
CUDA Memory Coalescing

- **Simple Examples**
 - All threads access a sequential memory address
 - Even if threads access it out of order
 - Or some don’t have memory accesses at all
CUDA Memory Coalescing

- Simple Examples
 - All threads access a sequential memory address
 - Even if threads access it out of order
 - Or some don’t have memory accesses at all
 - Has long as the HW can coalesced into a single memory access
CUDA Memory Coalescing

• Simple Examples
 – All threads access a sequential memory address
 – Even if threads access it out of order
 – Or some don’t have memory accesses at all
 – Has long as the HW can coalesced into a single memory access

• Otherwise memory will be split into several loads
 – Also due to the memory alignment
CUDA Memory Coalescing

• When you have 2D (Dx, Dy) and 3D (Dx, Dy, Dz) blocks, count on this indexing scheme of your threads when considering memory coalescence:

 – 2D: thread ID in the block for thread of index (x, y) is \(x + Dx*y \)
 – 3D: thread ID in the block for thread of index (x, y, z) is \(x + Dx*(y* + Dy*z) \)
 – To conclude, the x thread id runs the fastest, followed by the y, and then by the z.
CUDA Memory Coalescing

- Array of Structures vs Structure of Arrays

- Memory allocated by CUDA routines are aligned to at least 256 byte boundaries
- When allocating memory outside of CUDA, user must guarantee alignment for performance
for(int p = 0; p < width/TILE_WIDTH; ++p) {

 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 for(int k = 0; k < TILE_WIDTH; ++k)
 result += s_a[ty][k] * s_b[k][tx];

 __syncthreads();
}
ab[row*width+col] = result;
Block Synchronization barrier

• __syncthreads()
 – All threads wait until all threads reach the barrier
 – Why do we need it?
 – Aren’t all threads synchronized with the block?
 – NO
CUDA execution model

From NVidia
CUDA execution model

- **SIMT (Single Instruction Multiple Thread)**
 - Threads run in groups of 32 threads called “warps”
 - Threads in a warp share the same instruction unit
 - Divergence handle automatically by the hardware

- **Hardware Multithreading**
 - Resource Allocation & thread scheduling
 - Requires a high number of threads to hide latency

- **Threads have all resources needed to run**
 - Any warp with resource and dependencies meet can run
 - Context switching if almost “free”

From NVidia
CUDA execution model

- Threads are assigned to SMs in Block granularity
 - Up to 8 Blocks per SM
 - SM in Fermi can take up to 1024 threads
 - Could be 256 (threads/block) * 4 blocks
 - Or 128 (threads/block) * 8 blocks
- Threads run concurrently
 - SM assigns/maintains thread id #s
 - SM manages/schedules thread execution

From NVidia
CUDA execution model

- Thread Blocks divided in 32-thread Warps
- Warps are scheduling units in SM
- Example
 - Block size: 256 Threads
 - $256 / 32 = 8$ Warps
 - If SM is execution 3 Blocks
 - 24 Warps in execution

From NVidia
Block Synchronization barrier

- `void __syncthreads();`
- Synchronizes all threads in a block
- Once all threads have reached this point, execution resumes normally
- Used to avoid RAW / WAR / WAW hazards when accessing shared or global memory
- Allowed in conditional constructs only if the conditional is uniform across the entire thread block
CUDA Code (Shared memory)

for(int p = 0; p < width/TILE_WIDTH; ++p) {

 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(m*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 for(int k = 0; k < TILE_WIDTH; ++k)
 result += s_a[ty][k] * s_b[k][tx];
 __syncthreads();
}

ab[row*width+col] = result;

Ensure that all warps reach the barrier
Ensure shared memory tiles are not overwritten.
Use Shared Memory

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Original</th>
<th>Improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Loads</td>
<td>$2N^3$</td>
<td>$2N^2 \times (N/TILE_WIDTH)$</td>
</tr>
<tr>
<td>Throughput</td>
<td>10.7 GFLOPS</td>
<td>183.9 GFLOPS</td>
</tr>
<tr>
<td>SLOCs</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Relative Improvement</td>
<td>1x</td>
<td>17.2x</td>
</tr>
<tr>
<td>Improvement/SLOC</td>
<td>1x</td>
<td>7.8x</td>
</tr>
</tbody>
</table>

Values from a GTX 260

From NVidia
LAB

Implement Matrix Multiplication
LAB – Matrix Multiplication

• Inside the tranning-1 folder
 – GEMM : Implementation of the NAÏVE approach
 – GEMM2 : Project to implement shared memory approach

• Compile & Execution from LAB - 1
Final Notes
The “new” Moore’s Law

- Computers no longer get faster, just wider
- We must re-think our algorithms to be parallel
- Data-parallel computing is the most scalable solution
Misconceptions

- CUDA layers normal programs on top of graphics
 Compiles and executes directly to hardware

- GPU architectures are:
 - Very wide (1000s) SIMD machines 32 - Wide
 - on which divergence in a warp may be prohibitive...
 - with 4 wide vector registers Scalar registers

- GPU’s don’t do real floating point
 IEEE-745 Compliant (with minor exceptions)
Next session

- Parallel reduction
- Performance Optimizations
- Thrust
- Debugging and Profiling